

A 3D subsurface model of the Erzgebirge (Germany, Czech Republic) for 3D mineral potential mapping of Sn-W deposits with Artificial Neural Networks (ANN)

June 20th, 2018

- Based on crustal-scale tectonic
 3D model by Freiberg University
- 278 maps (geologic, tectonic, isoline and mining maps)
- 312 profile sections (incl. seismic profiles)
- c. 6700 wells (20 to 1700 m depth)
- Gravity, airborne magnetic and gammaspectroscopy legacy data

Cover units (sediments and metamorphics)

Also: density model, susceptibility model, stratigraphy, geochemistry, derivatives of geophysical data ...

Reproducibility and variance

9 copies of the same model, showing voxels with favourability >0.75

→ Some "core volumes" have high potetial in every model, "peripheral volumes" have high potential in some models, less potential in others

Reproducibility and variance

Cube plot of favourabilites from three copies of the same model

All voxels

Only "core volumes"

Only "core volumes", only favourability >0.75

- "core volumes" have high reproducibility
- "peripheral volumes" are concentrated in parts of the 3D model that are less constrained by input data
 - → Variance of favourability over repeated model runs can be used to assess prediction uncertainties

Exploration Targeting / Field verification

Selection of nearsurface high potential volumes for field reconnaisance

Chloritized micaschist with finely disseminated cassiterite at the Amtsberg locality

Conclusions: 3D Mineral potential modelling with ANN

- 3D predictive modelling results in volumes of interest and their depth below surface
 - → exploration targeting greatly improved compared to 2D predictive maps
- Model uncertainty (2D and 3D) can be evaluated by repeated training of the artificial neural network and analysis of variability
 - → exploration targets can be ranked for model uncertainty
- Requires enough information to construct 3D model and training data
 - → best suited for **brownfields exploration**

FKZ: KF3236902KM3

